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Abstract. In this paper, an ultra-discrete version of Burger’s equation, which includes the rule-
184 CA model, is extended to treat a higher velocity. The extended model has multiple states at
the transition region of car density from free to congested phase in the fundamental diagram. The
state of free phase at high density is unstable under perturbation, and its stability is discussed in
detail.

1. Introduction

Traffic flow is a complex discrete system and its analysis is one of main themes in complex
system theory. It shows interesting collective behaviours, such as pattern formation, phase
transition and scale-invariant fluctuations. The system has been studied by many different
approaches, which can be broadly divided into two categories; macroscopic and microscopic.
Macroscopic approaches are based on hydrodynamical equations [1, 2]. In these approaches,
we need an empirical steady flow-density relation from some observed data in order to analyse
time evolution of traffic flow. A flow versus density diagram of steady states is called a
fundamental diagram.

In order to explain the diagram itself, we use microscopic approaches instead of
macroscopic ones. Microscopic approaches are called car-following theory, because a
behaviour of each vehicle is modelled in relation to a vehicle ahead. First, Newell introduced a
preferred velocity function and obtained a differential delay equation [3]. Recently, an optimal-
velocity model was proposed by Bandoet al [4], and they introduced a semi-empirical function
of desirable velocity depending on headway distance. They also obtained a fundamental
diagram, in which they can successfully show the existence of discontinuity at a critical density
of transition from free to congested flow [5]. We show here an example of a flow versus
occupancy diagram of observed data taken by the Japanese Public Highway Corporation [6]
(figure 1). We find a discontinuity at the occupancy∼25%, and there seems to exist multiple
states around the critical occupancy. Many other real diagrams show this type of graph and
the flow-density curve has the shape of ‘inverseλ’ [6]. This discontinuity has been explained
by many researchers. Edie introduced a discontinuity by hand by using Greenberg’s model
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Figure 1. The observed data of flow (vehicles/5 min) versus occupancy of the road. This diagram
was produced by the Japanese Public Highway Corporation.

[7]. Navin and Hall proposed a three-dimensional space of data, i.e. relating flow, velocity and
density, and explained the discontinuity by using catastrophe theory [8].

A more recent development of traffic flow theory is the cellular automaton (CA) model.
The CA model is quite simple, has flexibility, and is suitable for computer simulations of
discrete phenomena [9]. Nagel and Schreckenberg (NS) proposed a stochastic traffic CA for the
description of single-lane highway traffic. The NS model is able to reproduce the spontaneous
formation of jams by introducing braking probability in its evolutional rule [10, 11]. Fukui
and Ishibashi introduced a deterministic CA model by using rule-184 CA [12]. Fukś and
Boccara also proposed deterministic CA models by extending the rule-184 CA [13]. Rule-
184 CA is famous and widely used as a prototype deterministic model of traffic flow. The
fundamental diagram of the NS model does not show discontinuity at a critical density [14, 15].
Those deterministic models that use the rule-184 CA also do not show such discontinuity or
multiple states, even though they exhibit sharp phase transition [13]. A CA model showing
discontinuity was obtained first in [16]. In that model, a so-called ‘slow-to-start’ rule was
introduced and led to multiple states in the fundamental diagram. In [17, 18], a slow-to-start
rule was introduced probabilistically by considering that standing cars accelerate with lower
probability than moving cars. Those models are generalizations of the NS model, and the
existence of metastable states is shown in a density region close to the maximum flow.

Recently an ultradiscrete version of Burger’s equation, that is, Burger’s cellular automaton
(BCA) has been proposed and used as a particle hopping model [19]. BCA is shown to contain
rule-184 CA as a special case, and thus is considered as a generalization of rule-184 CA. In
this paper, we extend BCA to treat a higher velocity, and we find that our new deterministic
CA model shows multiple states at a transition region in the fundamental diagram. Our model
is fully deterministic and suitable for detailed study of the properties of discontinuity and
multiple states in the diagram.
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This paper is organized as follows. BCA is introduced as a traffic flow model and its
properties and problems are discussed in section 2. BCA is extended to treat a higher velocity
and a fundamental diagram is analysed in section 3. In section 4, unstable free flow is studied
in detail and concluding discussions are given in section 5.

2. BCA as a traffic flow model

2.1. A new CA model of traffic flow

BCA is given by [19]

Ut+1
j = Ut

j + min(M,Ut
j−1, L− Ut

j )−min(M,Ut
j , L− Ut

j+1). (1)

It has been shown in [19] that (1) is related to Burger’s equationvt = 2vvx + vxx through
the transformationUt

j = L/2 + ε1xv(j1x, t1t), where1x and1t are lattice intervals inx
andt respectively andε is a parameter used in the ultradiscrete formula [20]. There are two
parametersL andM in BCA. In our previous paper [19], we showed the following properties
of this equation: assuming thatM > 0, L > 0 and 06 Ut

j 6 L for any sitej at a certain
time t , then, 06 Ut+1

j 6 L holds for anyj . Thus (1) is equivalent to a CA with a value set
{0, 1, . . . , L} under the above conditions. Moreover, if we put a restrictionL 6 M andL = 1
on BCA, then BCA is equivalent to rule-184 CA, which is used as a prototype of traffic flow
models [12].

It is, therefore, natural to consider (1) with generalL andM as a traffic model. The road is
expressed by a space of discrete sites indexed by a site numberj . We assume that the capacity
of each site isL cars.Ut

j denotes the number of cars at sitej and timet , which is an integer
from 0 toL. Cars at sitej and timet stay at sitej or move to sitej + 1 at the next timet + 1.
The maximum number of movable cars isM. Under this restriction, they move to fill vacant
spaces at sitej + 1. The second and the last term of the right-hand side of (1) represents the
number of cars that comes from the sitej − 1 and moves to the next sitej + 1, respectively.
It is apparent that the total number of cars is preserved under the rule.

The physical meaning of this model may be interpreted in two ways: first, the road can
be seen as anL-lane freeway in a coarse sense, and the effect of lane changes by cars is not
considered explicitly; second, we can consider it as a single-lane freeway whereρtj = Ut

j/L

represents the local density of cars at sitej and timet . If we choose largeL, the local density
can take detailed values from 0 to 1. In the latter case, the numberUt

j itself no longer represents
the real number of cars at sitej . Using the second interpretation, we defineρ by an average
density of cars per site given by

ρ ≡ 1

K

K∑
j=1

ρtj (2)

where we consider a periodic boundary condition to the road andK is its period. We consider
that throughout this paper the road is periodic, or a circuit. Since the total number of cars
is preserved, the densityρ is constant during the course of time. In order to describe the
fundamental diagram, we define an average flow of cars by

qt ≡ 1

KL

K∑
j=1

min(M,Ut
j , L− Ut

j+1). (3)

By using (3) and (2), the fundamental diagram is shown in figure 2 in the caseL 6 2M. The
diagram shows steady-state, long-time averages over the entire system starting from random
initial conditions. The flowqt becomes constant at large enought . In a region ofρ < 1

2, all
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Figure 2. The fundamental diagram in the caseL = 2 of BCA. The number of samples is 1000
and the system size used for the simulation isK = 50.

dots are exactly on a lineq = ρ, and on a lineq = 1− ρ in a region ofρ > 1
2 from any initial

data. These facts have been proved by using an ultradiscrete diffusion equation [19]. There
is a sharp transition pointρ = 1

2 which separates free laminar flow and congested flow. The
fundamental diagram in figure 2 is unique for anyL andM (L 6 2M), especially it is the
same as that of rule-184 CA (L = 1).

In the case ofL > 2M, the shape is trapezoidal (figure 3). The steady flow of the region
of the densityM/L 6 ρ 6 (L−M)/L has the constant valueM/L. This result has also been
proved in [19] in relation to a particle model. It should be noted that the trapezoid shape is
similar to that of Yukawaet al [21], who introduced a blockage site artificially into the rule-184
CA to take a flow bottleneck into account. The blockage site has some transmission probability
in their model. Our model, however, is fully deterministic and contains a parameterM in the
role of flow limiter.

2.2. Properties and problems of BCA as a traffic model

In this subsection, we restrict ourselves to the case ofL 6 2M andL = 2 for simplicity and
investigate detailed properties of BCA. We have seen above that rule-184 CA and BCA show
the same fundamental diagram. However, we should point out an important fact of BCA that
multiple states are degenerated in the diagram. First, it is easily shown that BCA withL = 2
contains the rule-240, -184, -170 CA’s [9] as a special case. In the case ofUt

j ∈ {0, 1} for all
j , from (1) the truth value table of BCA is expressed symbolically by

Ut
j−1U

t
jU

t
j+1

Ut+1
j
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0
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0
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111

1
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Figure 3. The fundamental diagram in the caseL = 3 andM = 1 of BCA. The number of samples
is 1000 andK = 50.

Then we see thatUt
j ∈ {0, 1} for all t . This is nothing but the rule-240, and all patterns of ‘0’

and ‘1’ shift to the right. Next, in the caseUt
j ∈ {0, 2} we obtain

Ut
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t
jU

t
j+1

Ut+1
j
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2
.

This is rule-184 of a value set{0, 2}. In the caseUt
j ∈ {1, 2} we obtain

Un
j−1U

n
j U

n
j+1

Un+1
j

= 111

1
,

112

2
,

121

1
,

122

2
,

211

1
,

212

2
,

221

1
,

222

2
.

This is rule-170, and all patterns of ‘1’ and ‘2’ shift to the left.
Thus in rule-240 CA, all cars expressed by the number ‘1’ move right by one site in unit

time in the background of 0’s. All states constructed only from 0’s and 1’s are always less than
1
2 density and therefore plotted on lineO–A in figure 2. Similarly, in the rule-170 CA, the
number ‘2’, which stands for a full-packed site, propagates left in the background of 1’s. The
density of this case is always greater than1

2 and it is apparent that all states are plotted on the
lineA–B. Steady states containing only ‘2’ and ‘0’ are spread on the ‘hat’O–A–B, which is
proved in [19]. Therefore, the lineO–A contains at least two kinds of steady states, i.e. those
of rule-240 and rule-184. The lineA–B also contains steady states of rule-170 and rule-184.
Therefore it is found that steady states governed by different rules have the same traffic flow
and car density in the BCA model. We call this situation ’degenerated’ in this paper. This is
a crucial difference between BCA withL > 2 and BCA withL = 1 (rule-184 CA). This fact
plays an important role in the following sections.
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BCA is, however, too simple to analyse the complexity of a congested flow. From figure 1
mentioned in section 1, the real flow does not show continuous transition from free to congested
flow, but there is a discontinuity around the critical density, and flowq has multiple values
at the same densityρ in the transition region. Although the fundamental diagram of figure 2
shows the phase separation of the free-moving region and the congested region, BCA is too
simple to capture the nature of the transition from free to congested flow.

3. Extended BCA model

In the previous section, we saw that multiple states are degenerated at the same value ofρ

in BCA. We show in the following that the degenerated states lead to remarkable changes in
the fundamental diagram when we introduce higher velocities of cars. For the rule-184 CA
model, the extension to higher velocities has been done by Fukui and Ishibashi [12], and they
have shown that the critical density in the fundamental diagram becomes lower for the higher
velocities. However, the fundamental diagram in their model does not show discontinuity at
the critical density.

Let us define the velocityV as the maximum number of sites by which a car can advance
in unit time. BCA is the caseV = 1. We extend BCA toV = 2 in the following, and let
us call this model ’extended BCA’ (EBCA) in this paper. Following [12], we assume that a
car can advance by two sites per time step if the successive two sites are not fully occupied.
The rule for shifting cars per time step is given as follows: First, we consider that cars moving
two sites have priority over those moving one site. Then the number of cars at sitej that can
move two sites forward is given byatj ≡ min(Ut

j , L− Ut
j+1, L− Ut

j+2), whereL− Ut
j+1 and

L− Ut
j+2 represent the vacant spaces at the sitesj + 1 andj + 2, respectively. Moreover, let

us define the maximum number of cars at sitej that can move asbtj ≡ min(Ut
j , L − Ut

j+1).
Then cars that move only one site forward is given by min(btj − atj , L−Ut

j+1− atj−1), where
L− Ut

j+1− atj−1 represents vacant space after all the cars moving two sites have moved. All
sites are updated synchronously under this rule. Therefore, considering the number of cars
entering into and escaping from sitej , the evolutional rule of EBCA is given by

Ut+1
j = Ut

j + atj−2 − atj + min(btj−1− atj−1, L− Ut
j − atj−2)

−min(btj − atj , L− Ut
j+1− atj−1)

= Ut
j + min(btj−1 + atj−2, L− Ut

j + atj−1)−min(btj + atj−1, L− Ut
j+1 + atj ). (4)

Note that (4) includes the model of Fukui and Ishibashi [12] as a special case if we takeL = 1.
In this paper, for the sake of simplicity, we do not consider the flow-limiterM in this new
model (4).

Let us analyse the traffic flow described by (4). The flow is defined by

qt ≡ 1

KL

K∑
j=1

min(btj−1 + atj−2, L− Ut
j + atj−1). (5)

In the following we restrict ourselves to the caseL = 2. The fundamental diagram for this rule
is given in figure 4. If we choose all the possible combinations of 0,1 and 2 as initial conditions,
we obtain the diagram shown in figure 4(a). Figure 4(b) also shows the fundamental diagram
of (4), but it is plotted by a finite number of random initial conditions. In both cases, we can
see discontinuity around the transition region. The steady state line no longer has a hat shape
but instead an ‘inverseλ’ shape, which is similar to that of real traffic flow given in figure 1,
if we average fluctuations. In figure 4(a) we see that there are two steady states, i.e. free and
congested, in the transition region1

3 6 ρ 6 1
2. In figure 4(b), the free-flow line is shorter
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Figure 4. The fundamental diagram of EBCA. We setK = 50 and initial conditions are given by
(a) all possible states of 0, 1 and 2; (b) a finite random states of 1000 samples.

Figure 5. Typical time evolution of the flow of EBCA in the region13 6 ρ 6 1
2 . The system size

isK = 50.

compared with that of figure 4(a). This indicates that the states of high flow are highly ordered
and therefore cannot be reached starting from random initial conditions, and the possibility of
realizing free steady states nearρ ∼ 1

2 is small. Such states of high flow, although they are
rarely observed in a real traffic flow, are important in considering the transition from free to
congested flow. It is an advance of our model that we can prepare special initial configurations
for generating high flux, and behaviours of them will be discussed in the next section.

It should be noted that the evolution of the flow can show damping oscillation (figure 5) in
the course of time starting from random initial conditions in the region1

3 6 ρ 6
1
2, although

it monotonously increases outside this region. In the BCA case, it is proved that the flow
monotonously increases at anyρ [19]. We will consider why this oscillation occurs in EBCA
in the next section.
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Figure 6. The schematic diagram of figures 1 and 4(a). The hatOAB represents the fundamental
diagram of BCA and the linesOD andCB represents that of EBCA.

Let us explain why the multiple states appear when higher velocity is introduced. Figure 6
shows a schematic diagram of figure 4(a). The dotted lineO–A–B represents the fundamental
diagram of BCA which is given in figure 2. As mentioned above, two kinds of steady states are
degenerated on the line in the case of BCA withL = 2. For example, in BCA two states are
degenerated on the pointA: . . .111111111. . . and. . .2020202020. . . if K is even. When we
consider the higher velocity, these states separate intoD andA respectively in figure 6. This
is because the state. . .2020202020. . . cannot increase its velocity due to the full-packed ‘2’
sites, although the state. . .111111111. . . can. Similarly, it is apparent that states consisted of
‘0’ and ‘1’, which are on the lineO–A in BCA, will shift to lineO–D in EBCA. Therefore, the
slope ofO–D is 2, while that ofO–A in BCA is 1, and these slopes represent the maximum
speed of each model.

Next, we consider states consisting of ‘0’ and ‘2’. These are on the hatO–A–B in BCA,
and on the hatO–C–B in EBCA. We see that the peak of the triangle is shifted fromρ = 1

2

to ρ = 1
3. The shift of the peak to the lower density has already been shown by Fukui and

Ishibashi [12]. The reason is as follows: if states of ‘0’ and ‘2’ haveρ 6 1
3, then there are,

on average, two vacant spaces in front of ‘2’. Thus a car can increase its velocity from 1 to 2.
Whenρ exceeds13, it cannot increase its velocity due to the full-packed sites.

Numerical experiments also show that steady states of ‘1’ and ‘2’ in BCA do not increase
their flow when higher velocity is introduced. This is also because there are enough site ‘2’
to block the traffic flow. Then the lineA–B does not change in EBCA. Taking these facts
into consideration, multiple states will appear between1

3 6 ρ 6 1
2 when higher velocity is

introduced due to the separation of degenerated states.

4. Unstable free flow and shock wave

Let us consider in detail the new branchC–D in figure 6. We can observe that the steady
state nearD in C–D is unstable with respect to ‘perturbation’. We give a perturbation to a
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Figure 7. Time evolution of. . .11120111. . . by EBCA.

Figure 8. The schematic diagram of figure 4(a). States on the lineC–D can transit to those on the
lineC–A under some perturbations.

state by shifting a car to an appropriate vacant space. Let us consider a perturbation from
the state. . .11. . . to the state. . .20. . . . Physically, this means that there are at least two
successive ‘1’ sites, and the front car decreases its speed and consequently the site behind it
becomes a full-packed ‘2’ site. This perturbation apparently does not change the average car
density. Time evolution of the state. . .1111111111. . . onD with respect to the perturbation
is shown in figure 7. We can prove that the stateD transits to congested stateA after enough
time (figure 8). From figure 7, the tail of the string 22. . .2 expands backwards as fast as
‘0’ at the front advances, and the front of the string 22. . .2 expands backwards with half the
speed. Therefore at sufficiently larget , we see that the number of ‘2’∼n and the number of
‘1’ ∼3n× 2

3 = 2n. Considering that the car at site ‘2’ cannot move and the car at the site ‘1’
can move 2 sites ahead per time, the mean velocity from the tail of the string 22. . .2 to the
front of ‘0’ is

〈V 〉 ∼ 2n× 2

2× n + 2n
∼ 1. (6)

Of course the average car density remainsρ = 1
2 during the time evolution, and the periodic

boundary condition does not change the above discussions. Thus the traffic flowq = ρ〈V 〉
will eventually approach12.
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Numerical experiments show that a state on lineC–D transits toC–A under an appropriate
perturbation. This means that states of free traffic flow are unstable against perturbation if car
density is high (13 < ρ). If only one car decreases its speed in this unstable state of free phase,
then the whole traffic flow will eventually come into the congested phase. The existence of
the unstable branch is also discussed in [22] in relation to the modified version of the Nagel
and Schreckenberg model and our results have good agreement with their discussions.

Further, it is interesting to note that a state nearC onC–A can transit toC–D under an
appropriate perturbation as shown in figure 8. For example, let us consider the steady state
110110111110, with periodK = 12, onC–D. If we perturb it to 110110120110, it becomes
a steady state onC–A. It is clear that if we perturb the latter state to the former, we also obtain
a transition fromC–A to C–D. In this case the effect of the perturbation does not expand to
the whole state. However, a state nearA onC–A, cannot transit toC–D under a perturbation
since there are too many full-packed sites. Therefore the stability of the new branchC–D is
summarized as follows: states nearD on C–D are unstable and those nearC on C–D are
stable under perturbation.

The unstable properties of new branchC–D have an important role on the time evolution
of the flow. As we see in figure 5, the flow can show a damping oscillation in the transition
region 1

3 6 ρ 6 1
2. If we start from a state nearD on C–D with some perturbation, then

fully-packed sites will grow backward and the flow will decrease in the course of time. As we
impose a periodic boundary condition in this paper, the growth of congested sites will stop and
new stationary flow will appear after a while. In the formation of the new stationary flow, it
is sometimes observed that the jam is partially cleared. Therefore damping oscillation of the
flow is seen in the transition region.

Finally let us consider the situation where a congested state exists in a free flow. It can be
inferred that boundaries which separate the congested and the free state will move like a shock
wave. To make discussion easier, let us consider an infinite-site space in place of a periodic
one. There exists a steady congested state. . .121212. . . which gives a pointP and a free
state. . .010101. . . which gives a pointQ in figure 8. Let us consider an initial state where a
part of the former exists in the background of the latter as shown in figure 9(a). From the time
evolution of this state, we can see that the shock wave which separates the left free region and
the tail of the congested region propagates backward with the velocity calculated by the slope
of the lineQ–P in figure 8. This is proved by considering the conservation of number of cars.
The conservation law of the number of cars at a boundary between free and congested regions
is given byρf (vf + c) = ρj (vj + c), whereρf (ρj ) andvf (vj ) is density and velocity of the
stateQ(P ) andc is a velocity of the boundary, i.e. the shock wave. Since flowq is defined by
q = ρv, we obtainc = (ρf vf − ρjvj )/(ρj − ρf ) = (qf − qj )/(ρj − ρf ), which is the slope
of the lineQ–P . This holds any states betweenO–C andC–B and the velocity is less than
−1. Also, the state of the head ofP becomes the state indicated byC, and the slopeC–P is
−1. Thus the congested stateP vanishes after a time due to the difference in velocity of both
boundaries ofP .

Next, we consider an unstable free state. . .01111011110. . . giving R in figure 8. Let
us make an initial state by putting a part of. . .121212. . . giving P in the background of
. . .01111011110. . . as shown in figure 9(b). In this case, the new point is that the tail of the
. . .121212. . . region shows stagnation of car flow and the stagnation region corresponds to
the state 22. . .22 givingB in figure 8. Moreover, the stagnation region widens in the opposite
direction in the course of time. This is interpreted as follows. The unstable free flow can be
considered as a state of overloading of cars. Then it is easily stagnated due to perturbations
as shown above. The boundary between the regions ofR andB propagates backwards with a
velocity calculated by the slope of lineR–B, and the boundary between the regions ofB and
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(a)

(b)

Figure 9. (a) Time evolution of a free stable region containing a congested region. The shock
wave propagates backwards and the region ahead of the congested one becomes the state giving
C in figure 8. (b) Time evolution of an unstable free region containing a congested region. The
stagnation of car flow occurs behind the congested region. White, grey and black squares denote
a site with value 0,1 and 2, respectively.

P moves with the velocity of the slope of lineB–P , i.e.−1. Therefore the difference in the
velocity of both boundaries ofB will make the stagnated region wider.

Note that in both cases, we see that the head of the region ofP becomes the region
indicated byC in figure 8. This shows that cars do not increase their velocity to the maximum
speed in the unstable region when they get out of the congested region.

5. Conclusion

We propose a new deterministic CA model of traffic flow in this paper, EBCA, which shows
multiple states in the fundamental diagram. The model can be considered as the multivalue and
higher-velocity generalization of rule-184 CA. A new point is that the free-moving state and the
congested state coexist at1

3 6 ρ 6
1
2 in the fundamental diagram in the caseL = 2, while in

the case ofL = 1 multiple states do not exist [12]. It is shown that the states in the new branch
C–D transit toC–A under perturbation in figure 8. The perturbation considered in section 4
corresponds to a kind of braking. Since in the NS model braking probability is introduced as
noise, then the unstable part of the new branch may disappear by introducing noise in EBCA.
Introducing the influence of noise will make our model more realistic. We give the following
remarks. Since our model is deterministic, analytical methods such as the ultradiscrete method
[20] can be applied to study the multiple states in detail. Moreover, when we consider the gen-
eralL and generalV of BCA, other multiple states will appear in the diagram in the caseL > 2,
and introducing the flow limiterM in the EBCA suppresses the multiple states. Detailed anal-
ysis of these facts and of density fluctuations due to noise or open boundaries, or in comparison
with other traffic flow models with metastable states will appear in succeeding papers.
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